textual representation of a system architecture combined with pseudo-code

Step 1: System Architecture - Deep Dive

a. High-level Architectural Diagram (Textual Representation)

Step 2: Communication Protocols

Opt for JSON-based communication for easy parsing and compatibility. Each component should expose specific endpoints or methods for task reception and response delivery.

Step 3: Integration of AutoGPT with Leon.AI - Detailed Approach

a. Dispatcher Interface

pseudo

Copy code

function sendTaskToDispatcher(prompt) {

    // Serialize the prompt to JSON

    serializedPrompt = JSON.stringify(prompt)

    

    // Send serializedPrompt to First-Level AutoGPT (Dispatcher)

    appropriateWorker = callAutoGPTDispatcherAPI(serializedPrompt)

    

    // Dispatcher determines which worker should handle the task

    responseFromWorker = sendToAutoGPTWorker(appropriateWorker, serializedPrompt)

    

    return JSON.parse(responseFromWorker)

}


b. 'AutoGPT Stacking' Implementation

pseudo

Copy code

function sendToAutoGPTWorker(worker, task) {

    // Dispatcher sends task to the appropriate second-tier AutoGPT worker

    response = worker.processTask(task)

    return response

}


Step 4: Integration of EngineerGPT - Detailed Approach

a. & b. EngineerGPT Integration & Protocols

pseudo

Copy code

function generateCodeWithEngineerGPT(requirement) {

    // Serialize requirement to JSON

    serializedRequirement = JSON.stringify(requirement)

    

    // Send to EngineerGPT

    generatedCode = callEngineerGPTAPI(serializedRequirement)

    

    return JSON.parse(generatedCode)

}


Step 5: Incorporate PrivateGPT - Detailed Approach

a. & b. Integration & Protocols

pseudo

Copy code

function processDocumentSecurely(document) {

    // Ensure document is in a supported format

    if (isSupportedDocumentFormat(document)) {

        // Send to PrivateGPT for processing

        processedData = callPrivateGPTAPI(document)

        return processedData

    } else {

        return "Unsupported document format"

    }

}



This revised structure ensures that the first-level AutoGPT strictly acts as a dispatcher or manager, delegating tasks to the second-tier AutoGPT instances (the workers) without doing any processing itself. The rest of the components (EngineerGPT, PrivateGPT) continue to serve their specialized roles within the system.